Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Хакасский технический институт — филиал федерального государственного автономного образовательного учреждения высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю) <u>Б1.О.24 Физика</u> индекс и наименование дисциплины или практики в соответствии с ФГОС ВО и учебным планом
Направление подготовки <u>09.03.03 Прикладная информатика</u> код и наименование направления подготовки
Направленность <u>09.03.03.04 Прикладная информатика в государственном и муниципальном управлении</u> код и наименование направленности

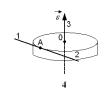
1 Перечень компетенций с указанием индикаторов их достижения, соотнесенных с результатами обучения по дисциплине (модулю), практики и оценочными средствами

Семестр	Код и наименование индикатора достижения компетенции	Результаты обучения	Оценочные средства			
ОПК-1. Способен применятьестественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности						
	ОПК-1.1. Знает основы математики, физики, вычислительной техники и программирования.	Знать:	тестовые задания; перечень вопросов к зачету			
1	ОПК-1.2. Умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования.	Уметь: - определять соответствующие предложенной задаче физические понятия и закономерности и уметь решать ее на основе имеющихся знаний и в ситуациях их недостатка при помощи информационнокоммуникационных технологий; - объяснять сущность исследуемых явлений на основе соответствующих физических закономерностей; - применять физические закономерности для решения задач.	тестовые задания; перечень вопросов к зачету			
	ОПК-1.3. Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности.	Владеть: — навыками проводить учебный физический эксперимент по заданной методике; — навыками проводить обработку результатов измерений по заданным формулам с указанной точностью; — навыками оценивать результаты прямых и косвенных измерений, полученных при выполнении учебного физического эксперимента.	формы отчетов к лабораторным работам, перечень вопросов к зачету			

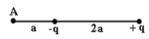
2 Типовые оценочные средства или иные материалы, с описанием шкал оценивания и методическими материалами, определяющими процедуру проведения и оценивания достижения результатов обучения

Фонд оценочных средств предназначен для организации контроля и самоконтроля студентов и включает в себя оценочные материалы для проведения текущего контроля

успеваемости и промежуточной аттестации по дисциплине в форме зачета.


В состав ФОС входят следующие оценочные средства: тестовые задания, формы отчетов к лабораторным работам, вопросы для подготовки к зачету.

Пример варианта теста. ОПК-1, уровень знать


- 1. Второй закон Ньютона в форме $\sum_i \vec{F}_i = m\vec{a}$, где \vec{F}_i силы, действующие на тело со стороны других тел, справедлив ...
- 1) в любой системе отсчета
- 2) при скоростях движения тел как малых, так и сопоставимых со скоростью света в вакууме
- 3) для тел как с постоянной, так и с переменной массой
- 4) только дл тел с постоянной массой (+)
- 2. Указать, где результат экспериментальных исследований записан верно:
 - 1) 52.748 ± 0.12
- 2) $4,74\pm0.07$ (+) 3) 351.5 ± 8
- 4) 9.8111 ± 0.03

Пример варианта теста. ОПК-1, уровень уметь

1. Направление вектора линейной скорости равнозамедленно вращающегося диска совпадает с направлением ...(1)

2. Электростатическое поле создано двумя точечными зарядами. Вектор напряженности результирующего поля направлен...

- 1) вправо (+)
- 2) влево
- 3) вверх
- 4) вниз

3. Два проводника заряжены до потенциалов 30 B и -20 B. Заряд 100 nKn нужно перенести со второго проводника на первый. При этом необходимо совершить работу, равную... (ответ дайте в мкДж с точностью до целых) (5)

Пример варианта отчета по лабораторной работе. ОПК-1, уровень владеть

ИЗУЧЕНИЕ ЯВЛЕНИЯ ВНУТРЕННЕГО ТРЕНИЯ В ЖИДКОСТЯХ

Дата выполнения	Дата сдачи отчета	
ФИО студента	rp.	
Цель работы: определение ко	эффициента вязкости жидкости методом С куемой жидкостью, набор дробинок различ	токса
1		_
		_
Математическая запись уравне	ения Стокса:	
Уравнение позволяет определи	1ТЬ	,
которая действует на	, имеющую форму	
со стороны	при условии	

котој	рый			В		·	
На те	ело действук	от силы, равн	ые по модулю	и направленные:			
1	l)						
2							
3	3)						
Зако	н, описываю	щий движени	ие тела				
Рабо	чая формул	a:					
n =	$\frac{(\rho - \rho_{\scriptscriptstyle MC})g}{18\ell}$	$\cdot \cdot d^2 \tau$					
ρ –							
•••							
Резу.	пьтаты измер	ений					Таблица 12
№	г	г					
п/п	$\rho_{\mathcal{H}}, \frac{\mathcal{E}}{\mathcal{C}\mathcal{M}^3}$	$\rho, \frac{\varepsilon}{c^{3}}$	ℓ , c M	d,см	au,c	$\eta, \Pi a \cdot c$	
1							
2							
				(Среднее значени	ie	
				Tao	бличное значени	ie	
		ости измерен					
Λη	$\sum_{i=1}^{\infty} <\eta $	$>-\eta_i\Big $					
ε	$=\frac{\Delta\eta}{<\eta>}=$	=					
	< 17 > ченный резу						
	$<\eta>\pm\Delta\eta$						
			ых значений:				
Выво							
Дыв							

Перечень вопросов для подготовки к зачету

- 1. Кинематические характеристики поступательного криволинейного движения материальной точки
- 2. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.
- 3. Инерциальные системы отсчета. Законы Ньютона. Масса, импульс, сила. Уравнение движения материальной точки.
- 4. Сила, работа и потенциальная энергия. Консервативные и неконсервативные силы. Работа и кинетическая энергия. Закон сохранения полной механической энергии.
- 5. Импульс. Закон сохранения импульса. Столкновения тел. Неупругое и абсолютно упругое столкновение.
 - 6. Уравнение вращения твердого тела вокруг закрепленной оси. Момент инерции. Формула Штейнера.
 - 7. Кинетическая энергия вращающегося твердого тела.

В лабораторной установке изучаемым телом является

- 8. Момент импульса материальной точки и момент механической системы.
- 9. Момент силы. Закон сохранения момента импульса механической системы.
- 10. Закон Кулона. Напряженность и потенциал электростатического поля. Работа сил электрического поля.
- 11. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками.

- 12. Емкость проводников и конденсаторов. Энергия заряженного конденсатора. Энергия взаимодействия электрических зарядов.
 - 13. Постоянный электрический ток. Электрический ток и его характеристики (сила и плотность тока).
 - 14. Разность потенциалов, электродвижущая сила, напряжение.
 - 15. Сопротивление проводников. Закон Ома. Закон Джоуля- Ленца.
 - 16. Правила Кирхгофа.
 - 17. Магнитное взаимодействие постоянных токов. Вектор магнитной индукции.
 - 18. Закон Ампера. Сила Лоренца. Движение зарядов в электрических и магнитных полях.
- 19. Закон электромагнитной индукции Фарадея. Правило Ленца. Самоиндукция. Индуктивность соленоида.
 - 20. Работа по перемещению контура с током в магнитном поле. Энергия магнитного поля.
 - 21. Электромагнитные колебания и волны.
 - 22. Колебательный контур и превращение энергии при электромагнитных колебаниях. Формула Томсона.
- 23. Активное, индуктивное и емкостное сопротивления. Закон Ома для переменного тока. Мощность в цепи переменного тока.
- 24. Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути. Основное уравнение интерференции.
 - 25. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция на простейших преградах.
 - 26. Теория атома водорода по Бору. Линейчатые спектры атомов.
 - 27. Характеристики ядра: заряд, масса, энергия связи нуклонов.
 - 28. Радиоактивность. Источники радиоактивных излучений. Виды и законы радиоактивного излучения.
 - 29. Ядерные реакции. Деление ядер. Синтез ядер. Законы сохранения в ядерных реакциях.

Методические рекомендации, определяющие процедуры оценивания

Критерии оценки тестовых заданий

Тесты формируются в еКурсе дисциплины и позволяют получить результат оценивания автоматически. Тесты состоят из 10-15 заданий разного типа (множественный выбор, соответствие и др.) и проводятся в период контрольных недель.

Каждый тест оценивается по стобальной шкале. Проходной балл – 70.

При не достижении проходного балла рекомендуется повторить теоретический материал и воспользоваться дополнительными попытками прохождения теста до достижения проходного балла.

Критерии оценивания:

- «ЗАЧТЕНО» выставляется обучающемуся, если он выполнил 80 % задания.
- «**HE 3AЧТЕНО**» выставляется обучающемуся, если он выполнил менее 80 % задания.

В случае выполнения задания на оценку «не зачтено», оно возвращается обучающемуся на доработку.

3. ПРОЦЕДУРА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Сдача зачета производится в период экзаменационной сессии. Ведущим преподавателем может быть проведена прозачета по вопросам.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических возможностей (подбираются индивидуально в зависимости от возможностей здоровья студента):

Категория студентов	Виды оценочных	Форма контроля и оценки результатов
	средств	обучения
С нарушением слуха	Тесты, контрольные	Преимущественно письменная проверка
	вопросы	
С нарушением зрения	Контрольные вопросы	Преимущественно устная проверка
		(индивидуально)
С нарушением опорно-	Решение тестов,	Организация контроля с помощью

двигательного аппарата	контрольные	вопросы	электронной	оболочки	MOODLE,
	дистанционно		письменная проверка		

Разработчик: / В. В. Тимченко